主要内容
递增与递减区间复习
复习我们如何用微分来找到一个函数的递增和递减区间。
如何通过微分j计算找到递增和递减的区间?
函数递增(或递减)的区间对应于函数导数为正(或负)的区间。
因此,如果我们想要找到函数增加或减少的区间,我们可以对其求导并分析它的正负(这更容易做到!)。
想要了解更多有关递增/递减区间和微积分的知识? 查看 这个视频。
例题一
让我们找到函数 f, left parenthesis, x, right parenthesis, equals, x, cubed, plus, 3, x, squared, minus, 9, x, plus, 7 递增和递减的区间。首先,我们对函数 f 求导:
f, prime, left parenthesis, x, right parenthesis, equals, 3, x, squared, plus, 6, x, minus, 9
现在我们要找出 f, prime 是正的还是负的区间。
当 x, equals, minus, 3 以及 x, equals, 1 时,f, prime 与 x 轴相交,因此它的符号在以下每个区间都必须是常数:
让我们检查一下 f, prime 在每个区间的值,看看它在该区间内是正还是负。
区间 | x 值 | f, prime, left parenthesis, x, right parenthesis | 结论 |
---|---|---|---|
x, is less than, minus, 3 | x, equals, minus, 4 | f, prime, left parenthesis, minus, 4, right parenthesis, equals, 15, is greater than, 0 | f 递增 \nearrow |
minus, 3, is less than, x, is less than, 1 | x, equals, 0 | f, prime, left parenthesis, 0, right parenthesis, equals, minus, 9, is less than, 0 | f 递减 \searrow |
x, is greater than, 1 | x, equals, 2 | f, prime, left parenthesis, 2, right parenthesis, equals, 15, is greater than, 0 | f 递增 \nearrow |
所以当 x, is less than, minus, 3 或者当 x, is greater than, 1 时,f 递增;当 minus, 3, is less than, x, is less than, 1 时,f 递减。
例题二
让我们找到函数 f, left parenthesis, x, right parenthesis, equals, x, start superscript, 6, end superscript, minus, 3, x, start superscript, 5, end superscript 递增和递减的区间。首先,我们对函数 f 求导:
f, prime, left parenthesis, x, right parenthesis, equals, 6, x, start superscript, 5, end superscript, minus, 15, x, start superscript, 4, end superscript
现在我们要找出 f, prime 是正的还是负的区间。
当 x, equals, 0 以及 x, equals, start fraction, 5, divided by, 2, end fraction 时,f, prime 与 x 轴相交,因此它的符号在以下每个区间都必须是常数:
让我们检查一下 f, prime 在每个区间的值,看看它在该区间内是正还是负。
区间 | x 值 | f, prime, left parenthesis, x, right parenthesis | 结论 |
---|---|---|---|
x, is less than, 0 | x, equals, minus, 1 | f, prime, left parenthesis, minus, 1, right parenthesis, equals, minus, 21, is less than, 0 | f 递减 \searrow |
0, is less than, x, is less than, start fraction, 5, divided by, 2, end fraction | x, equals, 1 | f, prime, left parenthesis, 1, right parenthesis, equals, minus, 9, is less than, 0 | f 递减 \searrow |
start fraction, 5, divided by, 2, end fraction, is less than, x | x, equals, 3 | f, prime, left parenthesis, 3, right parenthesis, equals, 243, is greater than, 0 | f 递增 \nearrow |
由于 f 在 x, equals, 0 之前 和 在 x, equals, 0 之后递减,所以在 x, equals, 0 时也递减。
因此,f 在 x, is less than, start fraction, 5, divided by, 2, end fraction 时递减,在 x, is greater than, start fraction, 5, divided by, 2, end fraction 时递增。