If you're seeing this message, it means we're having trouble loading external resources on our website.

如果你被网页过滤器挡住,请确保域名*.kastatic.org*.kasandbox.org 没有被阻止.

主要内容

直角三角形中边长比例之于角的函数

 相似的,直角三角形中边长的比是关于角度的性质。
在学习全等的时候,我们认为知道两个角和对应两边(边角边全等)就足以保证两个三角形所有对应的边和角全等。
为什么是这样的呢?我们使用勾股定理时都需要知道两边求第三边。在本文中,我们将以直角三角形为例,初步理解为什么角和对应两边可以为我们提供这样的信息。
现在是和三两好友合作的好机会。本文的目标是找出并讨论规律,而不是花费大量时间计算。尝试分工,以便能够有更多时间来讨论你的发现。

找出规律

首先,我们要先收集一组三角形的数据。
这四个三角形的关系是什么?
这些三角形是
,是根据
标准判断的。

测量数据表
还是那四个三角形。
完成和 A有关的测量数据表
ABCADEAFGAHI
对边长691215
邻边长8
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
16
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
斜边长1015
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
25
角 A37°37°37°37°
直角90°90°90°90°
最后一个角
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
°
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
°
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
°
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
°

现在我们准备好了,可以检查数据,找出规律。
比值表
完成比值表。
四舍五入到小数点后两位
ABCADEAFGAHI
邻边长斜边长
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
对边长斜边长
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
对边长邻边长
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$
  • 你的答案是
  • 一个整数,例如 6
  • 一个最简真分数,如 3/5
  • 一个最简假分数,如 7/4
  • 一个混合带分数,例如 1 3/4
  • 一个精确的十进位小数,例如0.75
  • pi 的倍数, 例如 12\ \text{pi} 或 2/3\ \text{pi}$

你发现了什么?

证明这个规律对于其他角度也适用

证明
证明 ACBC=FDED
说理过程理由
1AF所有直角相等。
2BE条件给定。
3ABC
相似
4ACFD=BCED相似三角形对边比值相等。
5ACBC=FDED将两边同时乘以

证明结论
我们证明了什么?
选出正确答案:
我们证明的是什么三角形?
选出正确答案:

我们得出了什么结论?

如果两个直角三角形有共同的锐角角度,则它们的角角相似。三角形对应的边长的比值将相等。所以,一个直角三角形的边长之比只是取决于一个锐角角度。

这有什么用处?

以前,当我们知道其他两个长度时,我们可以使用勾股定理来求出直角三角形的任何缺失的边长。现在,我们有办法将角的测量与直角三角形的边长联系起来。当我们只知道一个长度和一个锐角角度时,我们就可以算出两个缺失的边长。我们甚至可以根据任意两条边长算出直角三角形中的锐角角度。
延伸 1.1
给出直角三角形中一个锐角的度量,我们可以知道三角形的边长相对于这个锐角的比值。
下表是 25°35°45° 角的大概比值。
角度25°35°45°
邻边长斜边长0.910.820.71
对边长斜边长0.420.570.71
对边长邻边长0.470.71
使用上表估计下图三角形 J 的度数。
选出正确答案:

想加入讨论吗?

尚无帖子。
你会英语吗?单击此处查看更多可汗学院英文版的讨论.