If you're seeing this message, it means we're having trouble loading external resources on our website.

如果你被网页过滤器挡住,请确保域名*.kastatic.org*.kasandbox.org 没有被阻止.

主要内容
当前时间:0:00总时长:11:45

计算平均速度和速率

视频字幕

我们已经了解了一些矢量和标量 让我们把这些用于最常用的问题中 不仅是在物理课上 同时也是在我们日常生活中可能见到的 因为你会试图了解自己走了多远 或者走得多块或者到某个地方需要多久 首先这儿:如果Shantanu在1小时可以向北走5公里 在车中,他的平均速度是多少? 首先我们回顾一下矢量和标量的知识。 给出的条件是他可以向北走5公里 给出了数量 即5公里,这是他移动的距离 同时给出了方向 这样他移动了5公里。距离是标量 但是也给出了方向,可以得到位移 所以,这里得到一个矢量值。 他向北移动了5公里。 并且他是在车上走了1小时。 那么他的平均速度是多少? 速度有很多方式来定义, 但是再次强调速度是矢量值。 我们区分矢量值和标量值的方式是 在矢量值的上面加一个小箭头。 通常它们是粗体的,你就有一个字体印象 它们也有箭头在上面。 这是告诉你 我们不仅关心其数值或者尺寸 我还关心其方向。 箭头并不是方向,只是告诉你这是一个矢量值。 因此速度是某种位置的改变 并且包括位置的方向改变。 所以你可以说位移 用“s”代表位移 也是一个矢量值。 这就是位移。 你看不明白 为什么我们不用“d”代表位移(displacement)? 这才是更自然的第一个字母啊。 为最好的解释就是 一旦你用到微积分 你会用“d”代表完全不同的东西 你会用它最为微分算子 这就是为什么我们不使用d 而使用s来避免混淆。 如果谁有更好的解释, 请在本视频给出建议 我会增加一个视频来给出更好解释。 速度是一定时间内的位移 如果我要写一个标量值的表达式 我可以写成速率(speed) 我这样写,就不会和位移混淆 或者写成比率(rate) 比率是另一种人们有时代替速率的方式 这是矢量版本 如果你关注方向。 如果你不关心方向, 你可以有你的比率 这就是比率或者速度 正比于你行走的距离 行走的距离 比上时间 于是得到两个 你可以称之为公式 或者称之为定义